Distributed Parallel Particle Advection using Work Requesting

Cornelius Miller, David Camp, Bernd Hentschel and Christoph Garth

Abstract — Particle advection is an important vector eld visualizat ion technique that is dif cult to apply to very large data sets
in a distributed setting due to scalability limitations in existing algorithms. In this paper, we report on several experiments using
work requesting dynamic scheduling which achieves balanced work distribution on arbitrary problems with minimal communication
overhead. We present a corresponding prototype implementation, provide and analyze benchmark results, and compare our results
to an existing algorithm.

<+

1 INTRODUCTION In contrast, several recent publications have targeted the handling

Integral curves are one of the most intuitive means to depict veci%f very large data sets. Pugmire et d6] considered root causes of

elds and they are a cornerstone of visualization and analysis acros
variety of application domains. Successful application of integratio

based techniques to large data must crucially leverage parallel com o .
goral curves among tasks. Each task works on its integral curves in

tational resources to achieve well-performing visualization. However;2' <. > 9 SO

scalable integral curve computation has been dif cult to attain. DUgC/ation, which minimizes communication overhead. Data blocks are
|dgaded as required by the computation. This results in two disadvan-

wigges. First, redundant data loading results in high I/O overhead. Sec-
ond, static scheduling leads to load imbalances because of the fact that

limits in scalability. . | | h I v, Th ks nish
In this paper, we investigate the application of a general-purpo%egra curve lengths usually vary strongly. Thus, some tasks nis

load balancing technique — work requesting — to integral curve co eir Wo_rk long before other_s, _and_ they stay idle because the static
putation.Work requestingand similarly its cousinvork stealinghave scheduling prevenltlslany redlskt)rllbulilo; 0;‘”0?": . he I/

been proven versatile schemes at balancing even very irregular an contrastparallelize-over-bloc ¢PO .) minimizes the O over-
dynamic loads well, while also exhibiting excellent scalability if im-€ad by statically and non-redundantly distributing data blocks among
plemented well §]. From a theoretical perspective, these techniqu% Ski' Each taslk comrp])utles tr‘g trage se_gm?]nts within its aa&gneﬁ
should handle integral curve computation well. Moreover, they do n _chs.hl lérackelzs eave tdebloci _?;]a oma:?, they arg sden$ to the tas
requirea priori knowledge about vector eld data, facilitate generatiorf’hich holds the required block. Thus, no /O is needed after an ini-

of new integral curves during computation, and have modest compldi@! 10ading phase. However, the frequent migration of traces leads to
ity of implementation compared to other specialized schemes. signi cant communication overhead. Additionally, the computation

Based on a prototype implementation, we report the results of s& comes highly imbalanced if only a few blocks actually contain par-

eral experiments centered on a typical integral curve use case. Jfgs' l.e. some tasks are overloaded Wh'k_a others idle. .
have investigated both scalability and ef ciency, and compare our im- ue to the strong data _dependency of integral curve computation,
plementation against a baseline approach. Our results show that wgiROSIng the best parallelization strategy cannot be dqoéori. To
requesting yields very good ef ciency and scales well to a mode@fj ress this, Pugmire et al. developed a hybrid scheduling scheme that

numbers of processors, and should therefore be consideredatsie v COMPines ideas of POB and POBI. A central master process dy-
strategy for integral curve load balancing. namically assigns trace computations to slave processes. The scheme

successfully mitigates load imbalances, yet its centralized nature may
become a bottleneck for increasing processor counts.

Other solutions to the load-balancing issues are present@did,[
2.1 Parallel Particle Advection 18]. Rather than adapting the scheduling of particle traces, they stat-

Integration-based techniques are one of the cornerstones of ow vidglly partition the domain into blocks of approximately equal work-
alization [L1]. Integral curves are typically classi ed instreamlines 10ad by using different schemes. While these solutions yields good
and pathlines depending on whether the underlying data is stead{ﬁ-’suns' they comes at the cost of an additional pre-processing step.
state or time-varying, respectively. Here, we will focus related work Peterka et al. present a variant of POB that is able to handle time-
regarding the parallel computation of large amounts of integral curvé@'ying data 15]. Based on this work, a pipeline-parallel compu-
Given reasonably small data, GPGPU-based approaches which @on of the Finite-Time Lyapunov Exponent (FTLE) has been pro-
a single GPU have been very successful. They exploit the straigR@Sed L3]. It exploits temporal coherence in order to advect particles
forward possibility of concurrently computing individual traces. Dif-Tom different points in time in parallel. _
ferences mainly result from the supported input data type, i.e. sup-MOstapproaches are implemented using the Message Passing Inter-
port for steady-state vs. time-varying data on the one hand and strfg&e (MP1) [12] only. Camp et al. proposed to ubgbrid parallelism
tured vs. unstructured grids on the oth#0[17, 2, 3]. However, it N order to better utllllze the increasing number of processing units in
seems that GPU-based approaches best serve highly interactivefday’s HPC machines. They observed good scaling for a combina-

cases where the handling of large data is not the top priority. tion of process-level MPI parallelization and thread-level paralleliza-
tion in comparison to an MPI-only implementatids}.[More recently,

they demonstrated a system in which GPUs carry most of the work-

: d imbalance and identi ed two fundamental distribution schemes

nat minimize either communication load or 1/O load.
uTheparallelize-over-seed$OS) technique statically distributes in-

2 RELATED WORK

Cornelius Miiller and Christoph Garth are with the Univeysif load [6]. With this_, approgch, they _speci cally target a class of modern_
Kaiserslautern. E-mail: {cmueller, garth}@cs.uni-kl.de HPC cluster designs which combine a fast, many-core accelerator with
David Camp is with Lawrence Berkeley National Laboratorymil: classical CPUs.

dcamp@lbl.gov.))

Bernd Hentschel is with RWTH Aachen University. E-mail: 2.2 Dynamic Scheduling

hentschel@vr.rwth-aachen.de. The key challenge for parallel integral curve computation isdits

namic data dependencthe exact data required to compute the curve
cannot be determinea priori. This information, however, would be

Algorithm 1 Pseudo code of the worker thread.

loop
if work queue emptyhen
Wait for new work item or termination.
else
Pop work item from the queue's front.
Load data block if needed.
Integrate as long as all required blocks are in cache.
if integral curve nishedhen
Delete work item.
else
Create new work item starting at last particle position.
Push new work item to the back of the work queue.
end if
end if
end loop

Fig. 1. An overview of the Jet4 dataset showing 25,000 streamlines.

- g) ; X Algorithm 2 Pseudo code of the supervisor thread.
A jet of fast air is entering a medium at rest (on the left), with stream- 9 P

lines seeded around the inlet. Strongly non-uniform particle behavior is loop _

apparent, with turbulence, recirculation, and laminar ow visible in the if received work requeshen .

image. This induces a strong load imbalance when using the parallelize- Hand over half of the local work queue, starting at the back.
over-seeds algorithm. end if

if work queue emptyhen
Perform termination detection.
Pick random victim and request work from it.
end if
end loop

crucial for an optimal, parallel schedule. Hence, there is no way to
create an ef cient scheduling priori. One either has to bear with an
inef cient solution or performdynamic scheduling

In general, dynamic scheduling strategies are used for parallel com-
putations, in which the distribution of the work is only discovered at
runtime. Two proven schemes arerk stealingandwork requesting In our application, each work item equals one integral curve. By
For both, the problem is partitioned into sevesairk itemswhich are gefault, all curves are equally distributed among all tasks; however,
small enough to be solved by a single processing unit. A processipgia| distribution is arbitrary and not a fundamental part of the adap-
unit will be called ataskin the rest of this paper to match the termyye gistribution scheme. Therefore, we test the worst case where all
used in MPI. In this paper, a work item correspond to an integral Cury@, i jtems are initially at just one task to see how fast the system can

or the integration work on an integral curve. Work items are initiallyaance it self. But for normal calculation of integral curves, all tasks
distributed among all tasks. Each task holds its itemsiiek qUeue paye the same number of work items at the beginning, which is also
which is processed in FIFO order. Once a task runs out of work,if{,e for the other experiments.

rst dynamically selects a random task and then tries to retrieve work .
from that task's work queue. The requesting task is calléide, the Every task has a local block cache, where the data blocks which

X L L . were previously loaded are kept to be used in further calculations. The
other task is th@ictim. If the victim itself has no work items, ano_tht_arc‘,jche may be smaller than the data set. If a newly loaded block does

randomyields optimal results in the general cagh [n}ll?;(; ;r;;clJethe cache, room is made by deleting the oldest block in a

The dlffgrence petween work stealing and work requesting is how Each task executes a basic parallelize-over-seeds algorithm. The
tasks obtain work items from one another. In a work requesting SChE%cessing of one work item consists of two parts. Firstly, the data

uler, the thief asks the victim for work and the victim actively provide lock where the integral curve starts is loaded from disk if it is not

it. In contrast, in a work stealing scheduler, the victim is oblivious o Iready in the local block cache. This ensures that at least a part of the

“.5 r_ole: t_he thie_f d"‘?C“y accesses o the victim's_queue without_ tr'teurve can be calculated. Secondly, the actual integration is done. In
victim being actively involved. Due to the symmetric communication, §

work 1. tin hedulers incur mor mmunication overhead 13:fsecond part, no additional data is loaded. This leads to two pos-

ork requesting schedulers Incur more communication overnead, yfo endings for the processing of the work item. Either the integral
they are far easier to implement, particularly in a distributed memogy, /. completed. Then the work item will be deleted. Or the curve
setting. Both strategies have shown to be ef cient in theory and prags

> T T aches a point where an unloaded block is needed. In this case, the
t'C% [?]' be%ause communication is only required if the load actually {n nished curve forms a new work item. The point where the intega-
unbalanced.

tion stopped is the new starting point. The new work item will be put
back in the work queue.

If it would be put at the front of the queue, it would be the next pro-
As mentioned above, an optimal schedule for integral curve compuggssed work item and certainly needs to load a new data block from
tion cannot be determinealpriori. Therefore, we suggest the use ofdisk. Therefore, it is put at the back of the queue, leaving the possi-
work requesting as a dynamic scheduling strategy. The relative sihility that the next item at the front does not need to load a new block.
plicity of work requesting is attractive, because it has been shownThis is likely when the work items are sorted at the start of the pro-
work well for a large class of unbalanced computations, and includegam, so that the starting points of the work items next to each other
relatively few parameters that need manual tweaking by a user. We tethe queue are also next to each other in the data domain.
cided against work stealing because it needs that each task has acceshe actual work requesting operates like described in the last sec-
to the work queues of all other tasks, requiring a form of remote mertien for the general work requesting algorithm: If one task has nished
ory access (RMA). However, it proved dif cult to deploy a platform-calculating all its work items, it sends a work request to another task,
independent RMA implementation as corresponding frameworks called victim. This victim is randomly chosen which was proven to
libraries are typically less mature than implementations of the widelpe optimal [L]. Dividing the work so that both the victim and the
used Message Passing Interface (MRB)[thief have the same amount of work after the operation has shown the

3 IMPLEMENTATION

$# 1# "# #"# $ 1! [

| | : : :
— T 3% m‘_—'\o\‘

e—e | & %!"

Fig. 2. Total runtime of the scalability test comparing work request- Fig. 3. Ef ciency of the scalability test comparing work req uesting with
ing with parallelize-over-seeds. The number of tasks goes from 32 to parallelize-over-seeds. Ratio of the total runtime which was spent do-
1024. A clear gap between both algorithms can be seen which gets ing the actual integration is shown. Work requesting has an ef ciency
even bigger on higher numbers of tasks. Additionally, work requesting of more than 90% even on 1024 tasks while parallelize-over-seeds
scales nearly perfect, while parallelize-over-seeds gets scalability prob- achieves a maximum of only 76% and drops signi cantly on high er task
lems from 256 tasks on. counts.

. . . 4 EXPERIMENTS
best performance8]. Since each integral curve is expected to take

the same calculation time without further knowledge, the victim sendthis section we describe the experimental setup that we used to com-
half of the work items in its queue back to the thief. As i, [the Pare our new scheduling strategy to the established parallelize-over-
local task takes its work items from one side of the queue (front) b@eds approach. We selected POS as base-line because it is similar
the items which are given to another task is taken from the other sigeour work requesting implementation apart from the work balanc-
(back). The work items which would need to load a block are put #9 part. So we can eliminate other factors on the performance like
the back, so they are the rst to be sent to thieves. This way, unnecddtial /0 or calculation restrictions. The key question behind these

sary 1/0 could be avoided because the victim does not have the neegi@eriments is whether or not the potentially better work distribution
block whereas the thief could have it in its block cache. outweighs the additional communication involved in work requesting.

_Dataset— Al tests have been conducted with thet4simulation
ﬁtaset, which describes a high-speed jet entering a medium at rest.
ch of the 735 time steps consists of a regular grid with 32 M points,
ich amounts to 384 MB per time step and 275 GB overall. The time

eps are partitioned into 1,024 blocks, each.

Our rst implementation was single-threaded and the communic
tion requests were only handled in between the processing of wi
items. This led to several problems. The most important one was t
a task could not answer work requests from other tasks while it Wn?
calculating a work item, so the requesting task had to wait for so : . . .
time before getting a response. This resulted in long idle times until aTh'S dataset offers a large variety of different integral curve behav

task with an empty work queue had found new work items. This hadS: inclqding rec.irculatlion and quickly.terminating Curves. Fig]Jre.

a signi cant negative impact on computation time and scalability. ~ 9'€S @n impression of integral curves in this dataset. For streamline
)) i - computations, we used a single time step, whereas pathline integration

Consequently, we implemented a multi-threaded version with twgas executed on the entire data set.

threads: a worker and a supervisor. The worker thread proct#ses Ryntime Environment — All the test results in this paper were

work items, see Algorithm, which means it is responsible for I/O andgptained on the Hopper system at Lawrence Berkeley National Labo-
integration. The supervisor thread handles the communication, see Aories. Hopper is a Cray XE6 system which features 153,216 com-
gorithm2. It replies to work requests from other tasks, sends out Wop,te cores organized in 6,384 compute nodes which are connected by
requests if its local work queue is empty, and does the termination Q\eproprietary Cray Gemini network. Each node is equipped with two
tectipn. This approach prevents the problems of the single-threadgg|ve-core AMD MagnyCours processors and 32 GB of memory. 1/0
version. The response times of the work requests are much shofiehandied through a parallel Lustre le system that provides access to
which improves the work request performance. approximately 2 PB of usable disk space.

Note that beyond using a block cache on each task, the implemen-Test Cases— We performed a strong scaling study and an arti cial
tation we describe here does not make use of some possible optimiead balancing test. In order to assess scaling behavior, we compare
tions such as improved caching and other optimizati@hs The se- our work requesting scheme to POS for a varying number of tasks
lection of the victim is completely random to ensure work requestingjven a constant amount of work. For each run, 1 million integral
fairness, and the work items are processed in sequence, without takingres were integrated. This number was chosen to ensure a suf cien
in account the data blocks in the cache. As it is our goal to evaluategree of available parallelism. Our tests comprise settings for 32, 64,
work requesting as a distribution algorithm for integral curve paral-28, 256, 512, and 1,024 tasks. Particles were seeded on a regglar g
lelization, we aim to keep the basic algorithm as simple as possibleuniformly covering the entire domain.
obtain an unobfuscated impression of work requesting scalability. Fur-In order to test the load balancing abilities of our work requesting
thermore, diverging from the usual work requesting scheme, wlsish lrscheme in an extreme case, we set up the following arti cial distribu-
been shown to perform excellent in general problein8]can easily tion test. All of the starting seed points were initially assigned to task 0
yield worse performance than without optimization. For example, cuand we then observed how work propagated throughout the system by
tom selection of work items while stealing inevitably results in longethe means of work requesting. We choose the same number and dis-
steal times and therefore more contention while looking for w8}k [tribution of seed points as the scaling tests, so we could compare the

results but we limited the test to one run with 256 tasks. This test ant
ipates the case of strong load imbalance which is typically encountel — G L — ‘ ,
in methods which seed new integral curves during runtime. Exampl r : - R
for such adaptive algorithms with on-the- y re nement strategies ar r

stream surfacef6] andstreaklines
All measurements were collected wittampirTrace[9]. We per-

form manual instrumentation using VampirTrace's regions feature
reduce the overhead of pro ling and obtain a clear picture of runtim
spent in different phases of the algorithm. The sections we measu
were initialization (consisting of setting up MPI, reading the metada - |
of the database and loading the initial seed set), communication (
work requesting and termination detection), idle time, data I/O, tt
integration calculation, and the termination detection (voting).

5 RESULTS

We analyzed the timing logs to determine the scalability of both alg

rithms, and then compute the ef ciency of each algorithm to integra

the integral curves. To test how well the work requesting algorithi

can perform under extreme load imbalance we designed an arti ¢

test to see the distribution of integration work across the tasks. The

results are presented in this section. Fig. 6. Strong scaling results for pathline computation using work re-
questing and parallelize-over-seeds, respectively.

5.1 Scalability Test

We look at the total time and ef ciency to process 1 million integral
curves at different concurrency levels. Additionally, Gantt charts atifferent kinds of communication, dark gray is the waiting of one task
presented in Sectidh.1.3to show the load balancing effect. for the others after it nished and light gray is the sleeping the super-
. . visor thread does when it is waiting for communication requests.
5.1.1 Streamline Runtime Figure4 is the work requesting algorithm gantt chart, it can be seen
The total runtime of the test runs can be seen in FiQuréhe x-axis that nearly 100% of the time is used for integration work, like one
shows the number of tasks, from 32 to 1024. On the y-axis the totabuld assume from the ef ciency plot. All of the tasks nish at nearly
runtime in seconds can be seen using logarithmic scaling. The blhe same time.
line represents the test using the work requesting algorithm and theFigure5 is the parallelize-over-seeds algorithm gantt chart, the load
green line represents the tests using the parallelize-over-seeds aigdralance can be seen clearly. The task which nishes its work last,
rithm. For both, the ideal speedup is plotted as a dashed line. Tia&es approximately double time than the rst task to complete its
ideal speedup shows the theoretical runtime if the performance of therk. But all tasks have to wait for the other tasks to complete, lead-
program would scale linearly with the number of tasks. It was calcing to the inef ciency of the parallelize-over-seeds algorithm. With
lated based on the runtime of the test with 32 tasks, as in this teskitger number of tasks, the difference between the completion of the
can be assumed that the amount of overhead due to parallelizationss and last task gets even bigger, this explains the worse ef ciency
the lowest. when using more tasks.
It can be seen that there is a signi cant gap between the graphs cor-))
responding to both algorithms. This gap increases further for highed-4 Pathline Runtimes
number of tasks: using 32 tasks, the parallelize-over-seeds algorithfgure 6 shows the strong scaling tests for both the work requesting
needs 38% more time to run than the work requesting algorithm, afid parallelize-over-seeds algorithms calculating pathlines on the Jet
using 1024 tasks, it needs 59% more. dataset. Both algorithms start scaling well, but then level out at 256
The comparison with the ideal speedup is also interesting. Heisks. This leveling is because of the rising cost of 1/O. Both algo-
the work requesting algorithm, both lines are nearly identical, whigfthms have to load a lot more data to integrate the pathlines to com-
means that it scales nearly perfectly. But using the parallelize-ovgietion. The cache size is reduced in half because of the requirement
seeds algorithm, a clear gap can be seen for 256 and more tasks. of needing two data blocks to integrate the curves between time seg-
.) ments. This reduces the chance of nding the data block needed to
5.1.2 Streamline Ef ciency continue integrating a pathline. Also when the task steals work it is al-
Ef ciency is de ned as the ratio of the total runtime which was speninost a given that every data block in the cache is no good, because data
doing the actual integration work. It is shown in Fig@ren the y-axis. in the cache will be from the end of the data time and the new work
The x-axis again gives the number of tasks. On these graph, both aixess will require data blocks from a different time segment. This will
use linear scaling. Again, the blue line represents the work requestlilgly cause the task to reload all new data.
algorithm and the green line the parallelize-over-seeds algorithm. o
It can be seen that the work requesting algorithm reaches nea?g Distribution Test
100% ef ciency on lower task counts and while it drops at higher taskhe distribution test analyzes the behavior of the algorithm under
counts, it is still 93% using 1024 tasks. extreme load imbalance by initially assigning all work items to just
On the other hand, the parallelize-over-seeds algorithm reachesna task. This anticipates the imbalance which adaptive methods like
maximum of 76% ef ciency using 32 tasks and drops signi cantly orstreaklines typically have. Figuigis a gantt chart of the this test. It
higher task counts, down to 58%. But the decrease seems to slow dalows only the rst 50 seconds from the total runtime of 479 seconds

and will maybe settle above 55%. and only about one thirds of the tasks. This is done to see the costs
. of distributing the work across the tasks. The task at the bottom is the
5.1.3 Streamline Gantt Charts one which initially has all the work items.

A gantt chart shows a summary of one parallel program run. The x- After the initialization time of about 4 seconds, all of the empty
axis represents the runtime of the program. Each thread is drawntasks send out work requests which can be seen in red. The bottom
a horizontal bar. The color of the bar corresponds to the activity thask sends out work items (purple), loads the necessary data blocks
thread did at the certain time: Blue stands for the integration worfblue and green), and starts integrating its work items. It takes roughly
green means loading a block, the different shades of red symboliZe seconds for most of the other tasks to have work items and start

Fig. 4. Gantt chart of the work requesting algorithm using 32 tasks. It can be seen that nearly all the time is spent with integration and all tasks
nish at nearly the same time, leading to a visible shorter ru ntime than parallelize-over-seeds as seen in Figure 5.

Fig. 5. Gantt chart of the parallelize-over-seeds algorithm using 32 tasks. The load imbalance between the tasks is clearly visible which leads to
an inef cient use of system resources, which results in a lon ger runtime.

Fig. 7. Gantt chart of the work requesting distribution test. Only the rst 50 seconds of the total runtime of 479 seconds is s hown for only about one
thirds of the tasks. After a few seconds of sending the work items, they are distributed between every task so the calculation can continue normally.

their integration. Only a few tasks need more time to nd work; théA\CKNOWLEDGMENTS

last task needs about 30 seconds to nd work. After that, the WoRis work was funded in part by the Marie Curie Actions within the
items are distributed good enough so that the run looks like the 1§} £p7 programme under grant #304099. The authors wish to thank
run where the work items were equally distributed at the beginning..yank Childs for an in-depth discussion of this work. We also thank

The efciency of the distribution test is less than the test withhe AHRP for uncomplicated access to the Elwetritsch cluster which
equally dlstrlbutlon because of the additionally time ngeded 10 &¥e used for early tests. For compute time on Hopper, were all the
change the work items at the start of the test. But it only droRgg; results presented in this paper were obtained, we thank Lawrence
from 98.4% to 94.7% which is still better then the equally d'St“bUBerkeIey National Laboratory, which was supported by the U.S. De-
tion parallelize-over-seeds algorithm. partment of Energy under Contract No. DE-AC02-05CH11231.

6 DiIscCUsSION REFERENCES

There is certainly an overhead involved when using the work requesft] R. D. Blumofe and C. E. Leiserson. Scheduling multithrehdemputa-
ing algorithm. Firstly there is the obvious overhead of communication tions by work stealingJournal of the ACM46(5):720-748, Sept. 1999.
to request work, send the work items and the voting process to detgp] K. Biirger, J. Schneider, P. Kondratieva, J. Kriiger, andM@stermann.
mine termination. But additionally, there is presumably more I/O than Interactive Visual Exploration of Unsteady 3D Flows. Rroceedings of
in the parallelize-over-seeds algorithm because of the ordering of the the Joint EG/IEEE VGTC Symp. on Visualizatipages 251-258, 2007.
particles. One task in the parallelize-over-seeds algorithm calculated3 M. BuRler, T. Rick, A. Kelle-Emden, B. Hentschel, and T.fen. Inter-
number of particles which all start near each other. So it is likely that ~ active Particle Tracing in Time-Varying Tetrahedral Grids.Proceed-
they use the same parts of the dataset, leading to fewer blocks to load ings of the Eurographics Symposium on Parallel Graphics éisdaliza-
for each task. On the other hand, the work requesting algorithm shuf- tion, pages 71-80, 2011. _
es the particles between the different tasks on each transfer of worl¢] D- €amp, H. Childs, C. Garth, and D. Pugmire. Parallel srearface
items. So theoretically each task may calculate each particle, needing ;ﬁg‘t’i‘(‘)ft,fzn ;(;rg':;g;gdi;a g‘gts'zﬂg“fzc' Large Data Analysis and Visu-
to load arbitrary parts of the dataset. A Co .
Both types of overhead get bigger on a higher number of tasks, 43 D: €amp, C. Garth, H. Childs, D. Pugmire, and K. 1. Joy. Sméae
there is more communication of work items between the tasks. Integration Using MPI-Hybrid Parallelism on a Large Multie Archi-

. . tecture. IEEE Transactions on Visualization and Computer Graphics
This overhead can be seen in the results, most clearly on the ef - 17(11):1702-1713, 2011.

ciency graph (Figurs), ,Whmh shows decreasing ef ciency for blgger] D. Camp, H. Krishnan, D. Pugmire, C. Garth, |. Johnson, EB@thel,
numbers of tasks. But it can also be seen that the overhead is relatively | joy, and H. Childs. GPU Acceleration of Particle AdventwWork-
small, less than 10% even on 1024 tasks. It is also much smaller than |ga4s in a Parallel, Distributed Memory Setting. Proceedings of the
the overhead of the parallelize-over-seeds algorithm, which consists Eyrographics Symposium on Parallel Graphics and Visuéiize 2013.
mﬁstly Ofkthe Wa_itirf:g of the tasks after they nished their work for the [7] L. Chen and I. Fuijishiro. Optimizing parallel performarmfestreamline
other tasks to nish. visualization for large distributed ow datasets. IBEE Paci ¢ Visuali-
The reason for using work requesting instead of work stealing is the sation Symposiunpages 87-94, Mar. 2008.
distributed memory of high performance computing clusters. Our proi8] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoortayd
totype uses one addition thread to handle the communication required J. Nieplocha. Scalable work stealing. $& ACM, Nov. 2009.
by the work requesting algorithm, this is needed to not interrupt thé®] A. Knlpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Liepkl: Mickler,
integration work. However dedicated hardware on current and future M. S. Mdiller, and W. E. Nagel. The vampir performance analysi$ set.
generation supercomputers which allows remote direct memory access N Tools for High Performance Computingages 139-155. 2008.
is more and more common. With this, a partitioned global addreE$] J- Kruger, P. Kipfer, P. Kondratieva, and R. Westermahiarticle Sys-
space can be used to access the work queues of other tasks without tem fo_r In_teractlve Visualization of 3D FlowslEEE Transactions on
interrupting them, therefore, work stealing could be implemented ef- ~ Visualization and Computer Graphickl(6):744-756, 2005.
fectively. One would expect better performance and scalability, as Hgl T-McLoughlin, 'f?' S. Laramee, R. Peikert, F. H. PIOSt' andien. Over
co-operation is needed from the victim. There are however indications Two Decades o Integratlon'-Based, Geometric Flow Visubra Com-
oo . . . - . puter Graphics Forum29(6):1807-1829, 2010.
(cf. [8]) that this difference is only important if the work items requir 12] Message Passing Interface Forum. MPI2: A message paiss@race
very little computation time and work remains unbalanced throughout™ ¢ 1-rq. High Performance Comp.uting Applicatiqn$2(1—2):1—299
the computation, which is not typical for an integral curve problem. 1998, '
Overall, we conclude that work requesting can be a viable load bgl3) B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and TeRet. Par-
ancing scheme for integral curve computation. We have observed itto' gjie| Particle Advection and FTLE Computation for Time-VaryiFlow
scale quite well, at a very modest cost to ef ciency. Naturally, our ex- Fields. InProceedings of the International Conference for High Perfo
periments cover a simpli ed implementation, and many optimizations mance Computing, Networking, Storage and Analysiges 1-11, 2012.

would be possible to bring performance up to higher levels. [14] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Load-BzgdnParallel
Streamline Generation on Large Scale Vector FielHEE Transactions
7 CONCLUSION on Visualization and Computer Graphjcs7(12):1785-1794, 2011.

T. Peterka, R. Ross, B. Nouanesengsy, T.-Y. Lee, H./WnSW. Kendall,
and J. Huang. A Study of Parallel Particle Tracing for SteSthte and
Time-Varying Flow Fields. InProceedings of the Parallel Distributed
Processing Symposium (IPDP$)ages 580-591, 2011.

3\?/@ D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. Webeal&zde Com-

Integral curves, while being one of the most important techniques 1dr!
the visualization of vector elds, are hard to calculated ef ciently in

a parallel setting due to strong inherent data dependency. General-
purpose load balancing techniques like work requesting have b
proven to be able to balance irregular loads well. In this paper, we h putation of Streamlines on Very Large Datasets.Phaceedings of the
investigated how well work requesting performs on the integral curve | iornational Conference for High Performance ComputiNgtworking,
computation problem. For this, we have implemented a prototype to Storage and Analysi€009.

compare it to a baseline approach. We have conducted tests 10 8@ M. Schirski, C. Bischof, and T. Kuhlen. Interactive Bele Tracing on
lyze scalability and ef ciency, as well as understand how it performs * Tetrahedral Grids Using the GPU. Rroceedings of Vision, Modeling,
even on a badly distributed work loads. Our results show very good and Visualization (VMV) 20Qéages 153—160, 2006.

ef ciency and scalability up to at least 1,024 processes. Therefo[eg] H. Yu, C. Wang, and K.-L. Ma. Parallel hierarchical végization of
work requesting promises to be an effective technique to balance in- large time-varying 3d vector elds. IBupercomputing, 2007. SC'07.
tegral curve computation load. Regarding future work, we would like Proceedings of the 2007 ACM/IEEE Conference juages 1-12. IEEE,
to investigate in how far dynamic, adaptive algorithms such as stream 2007.

surface §] or streakline computations, which generate new integral

curves at runtime, can be scheduled ef ciently with our approach.

	Introduction
	Related Work
	Parallel Particle Advection
	Dynamic Scheduling

	Implementation
	Experiments
	Results
	Scalability Test
	Streamline Runtime
	Streamline Efficiency
	Streamline Gantt Charts
	Pathline Runtimes

	Distribution Test

	Discussion

